

State of the planet

Climate stripes

Biodiversity stripes

Chemical stripes

The planetary boundaries

Publication 13/09/2023:

- Human activity affects the Earth's climate and ecosystems more than ever which risks the stability of the entire planet
- For the first time ever all nine planetary boundaries have been assessed
- Six of the nine boundaries are now transgressed

Living on this planet can only be done within planetary and justice boundaries
\rightarrow Watch video (5'05" - 11'55")

Turn the tide

NET-POSTITVEIMPACTS
ON BIODIVERSITY,
PEOPLE,ANDCLIMATE

AVOID AND ELIMINATE HARMFULPRACTICES

The 215t century dilemma

- Destruction of ecosystems + loss of biodiversity
- Pollution of air, water and soil
- Waste
- Disasters
- Emissions of CO2
- Water shortage
- Health
- Land rights
- Decent work?
- Prior, free and informed consent
- Freedom of association and expression
-

The ocean is worth more than its finite resources

Environmental risks

- Extremely vulnerable and slow growing ecosystems, rich in biodiversity
- Irreversible loss of biodiversity, disturbance by light and noise, toxic sediment plumes spread over vast areas
- Recovery of ecosystems = very slow (if at all)
- Restoration impossible
- Huge gaps in scientific knowledge

Economic risks

- Employment effects minimal
- Economic profitability: doubtful
- Impacts on fisheries, tourism, marine genetic exploration and other maritime sectors?
- Will enforce unsustainable consumption and production patterns

Social risks

- Impacts on local communities
- Involvement of citizens in decision making? Interest of future generations? Benefit sharing?

Directly mining seafloor habitats over a total area of $\sim 500,000 \mathrm{~km}^{2}$ will result in an impact to $>1,500,000 \mathrm{~km}^{2}$

This is equivalent to:
Spain + Portugal + France + Belgium + Germany
Total surface area: $1,530,217 \mathrm{~km}^{2}$

$300 \times$ Grand Canyon
Total surface area: $4,940 \mathrm{~km}^{2}$

CCZ Mining Impact

The 3D impact of nodule mining in the CCZ will be equal to a volume of

$6,400,000 \mathrm{~km}^{3}$

This is equivalent to:

3x Himalayan Mountain Range (from sea level to average peak height)

Volume: $2,133,333 \mathrm{~km}^{3}$

$1,000 \times$ Grand Canyon Volume: $6,100 \mathrm{~km}^{3}$

Plough track, DEA
> "German researchers dragged a sled over the seabed $\pm 4150 \mathrm{~m}$ deep in 1989 .
> When revisited 26 years later, in 2015, the tracks looked perfectly fresh"

Ridge \longrightarrow

EBS track	Reference

SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED ECOLOGY
 Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years

 J. Titschack ${ }^{4,5}$, A. Boetius ${ }^{1,2,4}$

Future supplies of rare minerals for global industries with high-tech products may depend on deep-sea mining. However, environmental standards for seafloor integrity and recovery from environmental impacts are missing. We revisited the only midsize deep-sea disturbance and recolonization experiment carried out in 1989 in the Peru Basin nodule field to compare habitat integrity, remineralization rates, and carbon flow with undisturbed sites. Plough tracks were still visible, indicating sites where sediment was either removed or compacted. Locally, microbial activity was reduced up to fourfold in the affected areas. Microbial cell numbers were reduced by $\sim 50 \%$ in fresh "tracks" and by $<30 \%$ in the old tracks. Growth estimates suggest that microbially mediated biogeochemical functions need over 50 years to return to undisturbed levels. This study contributes to developing environmental standards for deep-sea mining while addressing limits to maintaining and recovering ecological integrity during large-scale nodule mining.

Copyright 02020 The Authors, some right reserved; exclusive licensee American Association for the Advancement of Science. No claim to orighal US. Government onignal US. Governm Works. Distributed under a Creative Commons Attribution NonCommercial
License 4.0 (CC BY-NC).

- Sediment plumes will blanket considerable seafloor areas outside the mined area \quad impact area >> mining area

Environmental Impacts \& Risks of Deep-Sea Mining

Impacts of Polymetallic Nodule Mining

- Removal of nodules +10 cm of seafloor

Generation of sediment plume that will resettle \& blanket the seafloor
Discharge of sediment waste from surface platform / riser pipe

- Loss of habita
- Loss of species \& genetic diversity
- Loss of ecosystem structure \& functions

Change of surface sediment characteristics \& processes

Plume monitoring: Array of 14 platforms with 29 optical and acoustic sensors quantifying sediment particle concentrations in the bottom water

Disturbance effects on fauna

- Disturbance impacts on nodule ecosystems last for many decades and affect numerous ecosystem compartments and functions
- Loss of seafloor integrity by nodule and sediment removal generally reduces population densities and ecosystem functions, such as biogeochemical remineralization processes and the productivity of the benthic community

Megafauna density decrease \& community shift
Biogeochemical activity

Science $=$ More science is needed

Study the twilightzone before it is toolate

Cell Press

Science \& Society
Deep-Sea
Misconceptions Cause Underestimation of Seabed-Mining Impacts
Craig R. Smith, ${ }^{1, *}$
Verena Tunnicliffe, ${ }_{1}$ Ana Colaço, ${ }^{3}$ Jeffrey C. Drazen, ${ }^{1}$
Sabine Gollner, ${ }^{4}$ Lisa A. Levin, ${ }^{5}$ Nelia C. Mestre, ${ }^{6}$ Anna Metaxas, ${ }^{7}$
Tina N. Molodtsova Tina N. Molodtsov
Telmo Morato, ${ }^{3}$
Andrew K. Sweetman, ${ }^{9}$ Travis Washburn, ${ }^{1}$ and Diva J. Amon ${ }^{10}$

Scientific misconceptions are likely leading to miscalculations of the environmental impacts of deepseabed mining. These result from relative to habitats targeted and poor understanding of the sensitivity, biodiversity, and dynamics tivity, biodiversity, and dynamics of deep-sea ecosystems. Addressknowledge gaps is needed for effective management of deep-seabed mining.

Has Phytodetritus Processing by an Abyssal Soft-Sediment Community Recovered 26 Years after an Experimental Disturbance?

The Community Structure of Deep-Sea Macrofauna Associated with Polymetallic Nodules in the Eastern Part of the
Clarion-Clipperton Fracture Zone

Deep-Sea Mining With No Net Loss of Biodiversity - An Impossible Aim

Holly J. Niner ${ }^{1+}$, Jeff A. Ardron ${ }^{23}$, Elva G. Escobar ${ }^{4}$, Matthew Gianni ${ }^{5}$, Aline Jaeckel ${ }^{6}$, Daniel O. B. Jones ${ }^{2}$, Lisa A. Levin ${ }^{7}$, Craig R. Smith ${ }^{4}$, Torsten Thiele ${ }^{9}$, Phillip J. Turner ${ }^{\prime \prime}$ Cindy L. Van Dover ", Les Watting ${ }^{10}$ and Kristina M. Gjerde ${ }^{12}$
Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. "Out of kind" biodiversity offsets substituting one ecosystem type (e.g., coral reefs) for another (e.g., abyssal nodule fields) have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL) of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate). We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vuinerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subiect to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious ervironmental harm and minimize loss of biodiversity.

Macrostylis metallicola spec. nov.-an isopod with geographically clustered genetic variability from a polymetallic-nodule area in the Clarion-Clipperton Fracture Zone

$$
\text { Torben Riehl }{ }^{1,2,3} \text { and Bart De Smet }{ }^{4}
$$

Department of Marine Zoology, Section Crustacca, Senckenberg Research Institute and Natural
History Museum. Frankfurt am Main Germany
History Muscum, Frankfurn am Main, Cermany
Instiut for Foclogy, Evolution and Diversity, Johann Wolfgang Goethe Universitat Frankfurt
am Main Frankfurt am Main Germany am Main, Frankfurt am Main, Germany
Centre for Natural History, Zoologicicl Mu Centre for Natural History, Zoological Museum, Universiat Hamburg, Hamburg, Germany
'Department of Biology, Marine Biology Research Group, Ghent Univesity, Ghent, Belgium

Biogeochemical Regeneration of a Nodule Mining Disturbance Site:
Trace Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters
Sophie A. . . Paul ${ }^{\circ}$. , Birgit Gaye ${ }^{2}$, Matthias Haeckel', Sabine Kasten ${ }^{\text {sts }}$ and Sophie A.L. . .aull",
Andrea Koschinsky'

markers point in a similar direction. M. metallicola appears to be amongst the more common and widely distributed components of the benthic macrofauna in this region which may suggest a resilience of this species to future mining activities because of its apparent potential for recolonization of impacted sites from adjacent areas of particular environmental interest. The genetic data, however, show geographic clustering of its genetic variability, pointing towards a limited potential for dispersal. Local extinction of populations could potentially not be compensated quickly and would mean a loss of genetic diversity of this species.

The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the plowed tracks after 26 years. Especially the upper layer, usually rich in manganese-oxide and associated metals, such as $\mathrm{Mo}, \mathrm{Ni}, \mathrm{Co}$, and Cu , shows substantial differences in metal distribution. Hence, it can be expected that disturbances from polymetallic nodule mining will have manifold and long-lasting impacts on the geochemistry of the underlying sediment.

Science $=$ More science is needed

One Earth

Volume 5, Issue 3, 18 March 2022, Pages 220-223
Commentary
Heading to the deep end without knowing how to swim: Do we need deep-seabed mining?

Diva J. Amon ${ }^{12}$ ○ 区, Lisa A. Levin ${ }^{3}$, Anna Metaxas ${ }^{4}$, Gavin M. Mudd ${ }^{5}$, Craig R. Smith ${ }^{6}$
The deep seafloor is regarded as a potentially large source of the minerals needed for producing batteries to fuel the transition to a low-carbon energy system, but rapid, unrestrained mining would have severe impacts on deep-ocean ecosystems and should be avoided. We propose alternative pathways forward.

A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority.

$$
\text { Volume 138, April 2022, } 105006
$$

Assessment of scientific gaps related to the effective environmental management of deepseabed mining
 Sabine Christiansen ${ }^{f}$, Bronwen Currie ${ }^{\text {b }}$, Jeffrey C. Drazen ${ }^{\text {d }}$, Tomohiko Fukushima ${ }^{h}$, Matthew Gianni ${ }^{\text {i }}$, Kristina M. Gjerde ${ }^{\text {j }}$, Andrew J. Gooday_ ${ }^{\text {k }}$, Georgina Guillen Grillo ${ }^{\text {' }}$, Matthias Haeckel ${ }^{m}$, Thembile Joyini ${ }^{n}$, Se-Jong.Ju ${ }^{\circ}$ p, Lisa A. Levin ${ }^{q}$, Anna Metaxas ${ }^{\text {r }}$, Kamila Mianowicz 5, Tina N. Molodtsova ${ }^{\mathrm{t}} \ldots$ Chris Pickens ${ }^{\text {ad }}$

ORIGINAL RESEARCH article
RIGINAL RESARCH 2022
Front. Mar. Sci., O1 August 2022 Sec. Marine Affaía
volume $9-20221$
https://doi.org/10.3389//mars.2022.898711
Marine Policy

Evaluating the quality of environmental baselines for deep seabed mining

```Sabine Christiansen \({ }^{1 *}\), (4) Stefan Bräger \({ }^{2}\) and (9) Aline Jaeckel \({ }^{123}\)
Institute for Advanced Sustainability Studies (IASS). Potsdam. Germany
Bioconsult SH. Husum. Germany
BioConsult SH. Husum, Germany
Australian National Centre for Ocean Resources and Security (ANCORS). University of Wollongong. Wollongong. NSW. Australia
```

Generating environmental baseline knowledge is a prerequisite for evaluating and predicting the effects of future deep seabed mining on the seafloor and in the water column. Without baselines, we lack the information against which to assess impacts and therefore cannot decide whether or not they pose an acceptable risk to the marine environment. At present, the International Seabed Authority (ISA), which is the
The wave of resistance continues to grow. Be the next one to say no to deep-sea mining.

Growing movement for a moratorium:

- Business Statement Supporting a Moratorium
- Scientists supporting a pause
- Everyone else saving no to deep-sea mining

Mobility \& Energy

Google pHILIPs
- $R \wedge Z \equiv R$
asn $\boldsymbol{\gamma}$ bank
FAMA|investimentos
5ARVATN
generation
Planet

Circular economy

The Future is Sircular-Circular Economy and Critical Minerals for the Green Transition

- = True Blue visionary leader

Deal with minerals within planetary boundaries = work towards a closed-loop economy:

1. Reduction in material use through innovation in efficiency and applications of finite natural resources
2. Sharing models for cars, electrical appliances, batteries, renewable energy systems...
3. Product standards for circularity and climate \rightarrow life-long products with repair and lifetime score
4. Resources, climate change and conflict
5. Sustainable and responsible finance

Potential emergence of deep-sea mining = counterintuitive to a closed-loop economy:

1. Deep-sea mining operations would create significant pollution and environmental destruction
2. Deep-sea minerals are finite resources and essential to the functioning of deep sea ecosystems
3. Deep-sea mining would compromise ocean carbon, metals and nutrient cycles
4. Deep-sea mining would undermine efforts to increase the recycling of minerals and metals
5. Deep-sea mining would undermine efforts to reduce material intensity in design and production

CIRCULAR \&
RESPONSIBLE MINERALS

OCEAN PROTECTION, CONSERVATION \& RESTORATION
C. Today's \#WorldOceansDay reminds us of the key role the oceans have in everyday life.

Belgium is internationally one of the driving forces to \#SaveOurOcean.

6 In February, we signed the Brussels Declaration on the Ocean and \#ClimateChange, pledging urgent \#ClimateAction.

The protection of our oceans is a priority of Belgium's diplomacy

1㨻

Thank you for your attention

